[ Objective \
Determination of reservoir param- * Permeability
eters from testing hydrate-bearing * Shear strength
sediment samples with uninter- * Elastic properties (Vs, Gmax)
rupted pressure history: * Gas hydrate saturation
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Transfer of PCTB autoclave with pressurised core
from cold bath into PCATS laboratory container

N

* 2 drilling areas, northern conti-
nental slope, South China Sea

® June - August 2016

* R/V Fugro Voyager

®* Pressure and conventional cor-
INg

® 9 pressure core subsamples se-
lected for geotechnical testing

Fugro Voyager with Geotek laboratory containers in
place on afterdeck

/Guangzhou Marine Geological Survey (GMGS) 4, Leg 3\

” PCATS Triaxial

Determination of soil parameters at
in situ hydrostatic pressure and
stress conditions

® Pmax = 25 MPa
° p'max — ,3, max — 3000 kPa
* Fluid flow control to L precision

* Resonant column for small strain
geotechnical testing

* Large strain triaxial testing

* Extrusion of core samples into 0.5

mm butylene membrane by com-
puter-controlled servo motors

* Control of confining pressure for
quantitative degassing of samples
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/Sample selection

* Reception of pressure cores at in-
situ hydrostatic pressure

®* Core characterisation with Geotek

Pressure Core Analysis and
Transfer System (PCATS)"!
based on

. X-ray CT imaging
- p-wave velocity
-density

* Sub-sampling at in situ pressure

* Transfer of subsamples to pres-
sure chambers for further analysis
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GMGS4-SC-W01B-15A-4

- 11 cm height
- Aspect ratio 2:1

. Confined in core
liIner

. avg = 1.57 g/lem®

Vp, avg = 2154 m/s

g Sample Properties pre-PCATS Triaxial Testing
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Test sequence
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Small Strain Shear
testing

e—

Application of effective
stress; re-consolidation
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Bottom cut

Sample recovery

Undrained shear
testing

Quantitative

degassing
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Small Strain Testing
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Accelerometer output vs induced frequency of torsional vibration
during sample consolidation. Resonance frequencies increase with
degree of consolidation as effective stress rises up to in-situ values.
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Shear wave velocities derived from resonance column tests during

sample consolidation. SC-W01C-5A-7_RM has been degassed

and remoulded before renewed testing. Shear velocities reported

by Hamilton [3] for turbidites and silty clays without gas hydrates

are shown for reference.
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Effective stress-normalised Vs and G,,.x show a good linear corre-
lation to Sy (R® = 0.73 and 0.80, respectively). The data points for
subsample SC-W01B-15A-5 were not included in the regression
due to the uncertainty associated with Sy
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Undrained Triaxial Testing
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Strain softening (SC-W01B-15A-5) and hardening (SH-WO07B-
16A-4) during undrained triaxial shear tests.
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Samples SH-W07B-16A-4 (left) SC-W01B-15A-5 (right) after re-
covery. The barrel-type deformation shown by the former sample
IS indicative of plastic deformation and strain hardening, while
the clearly visible shear plane of the latter (right) indicates sud-
den failure typical to a brittle soil. The vesicles in the image on
the right indicate ongoing degassing after recovery.
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Effective stress-normalised S, derived from undrained shear tests.
The fair linear correlation of Syto Sy (R® = 0.73) illustrates the ce-
menting effect of the hydrate on the investigated sediments (see also
Luo et al. [4]).
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Permeability Testing
60

~XH-W06B-7A-3
40 |

N
2 O

0 20

AP Pore [kPa]
N
o

t[h]
Development of hydraulic gradients across samples in response to

directing flow through the sample at -100 nL/s (the negative sign de-
notes upward flow direction).
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Permeabilities derived from testing of samples in PCATS Triaxial
(squares) and cone penetration tests (CPT, triangles). A strong

sample anisotropy is suggested by ¢pr exceeding (vertical) Triax
by ~2 orders of magnitude.
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Sy [7]

Vertical permeabilites 1iax VS Sy. Overall, the vertical permeability is
only poorly correlated to Sy (R® = 0.36)
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Summary

) \_ permeabilites

~

* Hydrate saturation controls shear wave velocity, small strain shear
modulus and shear strength ...

* ... but only weakly affects permeability!

* Hydraulic anisotropy revealed by strongly different vertical to CPT




